

Ok, I can feel your eyes starting to glaze over already. Get on with it, Sarah. What does any of this have to do with skincare I hear you ask? Well, whilst some skincare ranges contain only naturally derived ingredients, the majority are comprised of laboratory created ingredients. It is much easier and cheaper to synthesise Vitamin E, for example, in a laboratory than to try and extract it from natural sources. Vitamin E can be found in almonds, sunflower seeds, wheat germ oil, amongst other things but the quantities of these ingredients required to acquire sufficient Vitamin E, and the cost associated with extracting it would make the final skincare product exorbitantly expensive.
When molecules are synthesised by man they always form in pairs that are the mirror image of each other. So, like your left and right hand, these mirror imaged molecules contain all the same parts but are not identical to one and other. Each mirror image of the molecule is given a prefix to its chemical name – either d or l. So, using the Vitamin E example, the chemical name for Vitamin E is alpha-tocopherol so the mirror images of the molecules are called d-alpha-tocopherol and l-alpha-tocopherol. But even though these molecules are nearly identical (the only difference being the mirror image) only one of the molecules can be used by the human body – in this case the molecule with the d-prefix (d-alpha-tocopherol). So chirally correct skincare contains ingredients that have been tested to ensure that they only contain the active molecule, out of the mirror imaged pair, that can be used by the human body. The molecules are sorted so that only the active molecule is added. With Vitamin E it has already been determined that d-alpha-tocopherol the active molecule so any Vitamin E that is added to chirally correct skincare will have been sorted so that only d-alpha-tocopherol is added. If your skincare is not chirally correct, and the vitamin E molecules have not been sorted, it will be listed in the ingredients as dl-alpha-tocopherol, as it contains a 50/50 mixture of the d-alpha-tocopherol and l-alpha-tocopherol molecules.
So what happens if the molecules are not sorted? Generally nothing; however, your skincare will be less potent. When a molecule is made, equal amounts of the l-molecule and d-molecule are created. So, if your skincare range claims to have 10ml of Vitamin E in it, but the Vitamin E has not been sorted to get the chirally correct molecule then your skincare will actually contain 5ml of active Vitamin E and 5ml of a molecule that does absolutely nothing - so your skincare is half as potent as you expect. In rare cases, one of the mirror images of the molecule might actually be dangerous. One of the best known examples of this is Thalidomide. Thalidomide was a sedative drug given to pregnant women to ease morning sickness, that also ended up causing shocking birth defects. Unfortunately, when the Thalidomide molecules were created, the scientists didn't test the effects of both of the mirror images of the molecules. So one of the mirror images of the molecule was the sedative, but it was the opposing mirror image that caused the birth defects. Had both of the molecules been tested for efficacy in the product development stages then the whole Thalidomide tragedy could have been avoided, but instead, the women were given the unsorted 50/50 mixtures of both Thalidomide molecules. Now that scientists are aware that the effects of each molecule can be so drastically different, all new molecules are tested. Therefore, there is no reason to be concerned if you are using skincare that is not chirally correct that it could be doing you damage, just be aware that it may not be as potent or effective as you think.
I translated the majority of the information in this blog from the following websites:
http://en.wikipedia.org/wiki/Chirality_(chemistry)
http://en.wikipedia.org/wiki/Tocopherol